منابع مشابه
Linear Algebra over a Ring
Given an associative, not necessarily commutative, ring R with identity, a formal matrix calculus is introduced and developed for pairs of matrices over R. This calculus subsumes the theory of homogeneous systems of linear equations with coefficients in R. In the case when the ring R is a field, every pair is equivalent to a homogeneous system. Using the formal matrix calculus, two alternate pr...
متن کاملAn Introduction to Pseudo-Linear Algebra
Pseudo-linear algebra is the study of common properties of linear differential and difference operators. We introduce in this paper its basic objects (pseudo-derivations, skew polynomials, and pseudo-linear operators) and describe several recent algorithms on them, which, when applied in the differential and difference cases, yield algorithms for uncoupling and solving systems of linear differe...
متن کاملRemark on Representation Theory of General Linear Groups over a Non-archimedean Local Division Algebra
In this paper we give a simple (local) proof of two principal results about irreducible tempered representations of general linear groups over a non-archimedean local division algebra A. We give a proof of the parameterization of the irreducible square integrable representations of these groups by segments of cuspidal representations, and a proof of the irreducibility of the tempered parabolic ...
متن کاملComponentwise Linear Modules over a Koszul Algebra
In this paper we devote to generalizing some results of componentwise linear modules over a polynomial ring to the ones over a Koszul algebra. Among other things, we show that the i-linear strand of the minimal free resolution of a componentwise linear module is the minimal free resolution of some module which is described explicitly for any i ∈ Z. In addition we present some theorems about whe...
متن کاملComputational linear algebra over finite fields
∗Université de Grenoble; Laboratoire Jean Kuntzmann, (umr CNRS 5224, Grenoble INP, INRIA, UJF, UPMF); [email protected]; 51, rue des Mathématiques, BP 53X, F-38041 Grenoble, France. †INRIA, Université de Grenoble; Laboratoire LIG (umr CNRS 5217, Grenoble INP, INRIA, UJF, UPMF); [email protected]; ENSIMAG Antenne de Montbonnot, 51, avenue Jean Kuntzmann, F-38330 Montbonnot Saint-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2021
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2020.11.008